SGV: Spatial Graph Visualization

Tarlan Bahadori¹, Alvin Chiu², Ahmed Eldawy¹, Michael Goodrich²

¹ University of California, Riverside ² University of California, Irvine

UCIrvine

Background and Motivation

Spatial Graph Visualization:

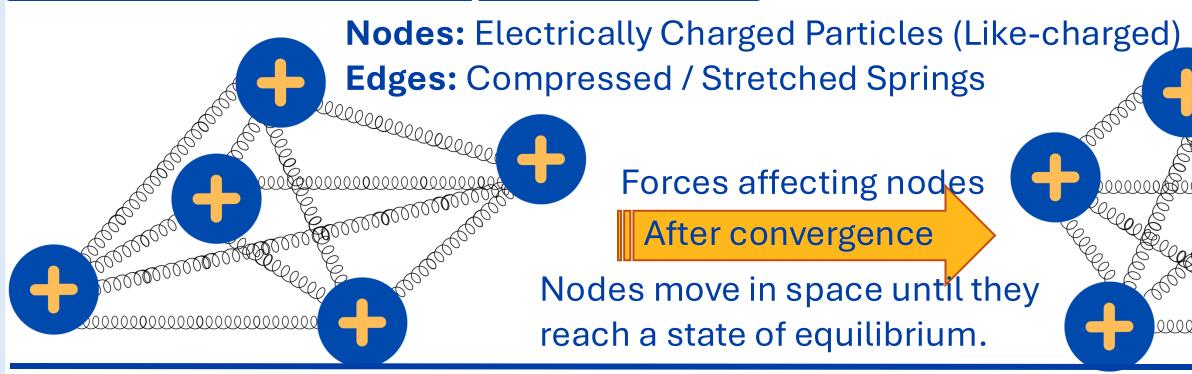
The **underlying space information** is also important. Examples:

- Railroad network
- Social Media Network
- Acaedemic Collaboration Network

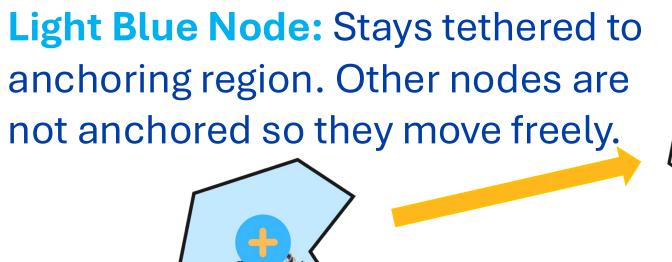
Spatial Graph Model:

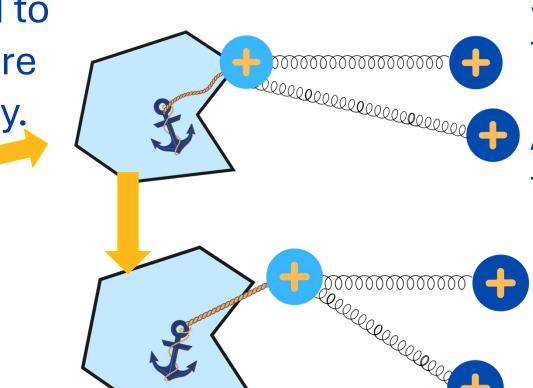
Nodes: Associated with geographic information. Edges: Undirected - Only Show Connectivity

Force Directed Graph Model:



Forces affecting nodes After convergence Nodes move in space until they





Spatial Graph: Nodes have a true geographic location. In final layout, should not move too far. Anchoring force keeps nodes tethered to anchor regions.

Anchor Region Types:

- Point
- Linestring
- Polygon
- Multi-point

Method

Force Formulas:

Three types of forces between nodes:

Attractive (Spring) Forces:

$$\mathbf{F}_{u \leftarrow v}^{\text{att}} = -\frac{d}{L} \, \Delta \mathbf{r}_{uv}$$

Repulsive Forces:

$$d^{2} = \max(\|\mathbf{r}_{uv}\|^{2}, \varepsilon^{2}), \qquad \mathbf{F}_{u \leftarrow v}^{\text{rep}} = c_{\text{rep}} \frac{\mathbf{r}_{uv}}{d^{2}}.$$
$$\mathbf{F}_{i}^{\text{rep}} = \sum_{j \in \mathcal{N}_{r}(i)} c_{\text{rep}} \frac{\mathbf{p}_{i} - \mathbf{p}_{j}}{\max(\|\mathbf{p}_{i} - \mathbf{p}_{j}\|^{2}, \varepsilon^{2})}.$$

Anchoring Forces:

$$\mu(A_u) = \begin{cases} 1, & A_u \text{ is a point,} \\ |A_u|, & A_u \text{ is a finite set of points,} \\ \text{Length}(A_u), & A_u \text{ is a linestring,} \\ \text{Area}(A_u), & A_u \text{ is a polygon,} \end{cases}$$

$$\mathbf{c}_u = \frac{1}{\mu(A_u)} \int_{A_u} \mathbf{x} \, \mathrm{d}\mu(\mathbf{x}), \quad \mathbf{p}_u = \underset{\mathbf{y} \in A_u}{\operatorname{arg\,min}} \|\mathbf{r}_u - \mathbf{y}\|.$$

Anchoring Force Models:

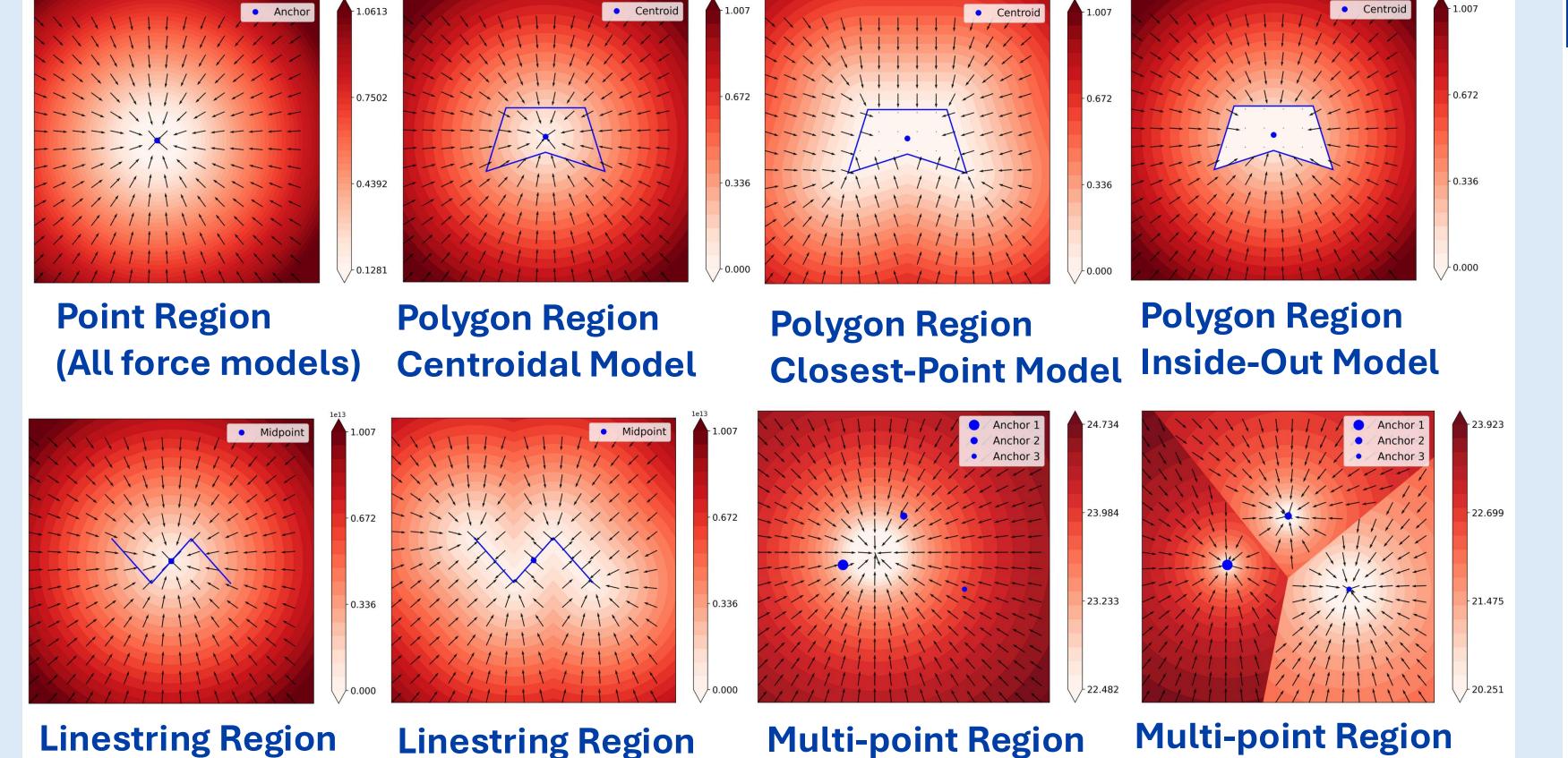
 $\mathbf{F}_{u}^{\text{anchor}} = \alpha \left(\mathbf{c}_{u} - \mathbf{r}_{u} \right).$ Centroidal:

Inside-Out:

Closest-Point:

Closest-Point Model

Anchoring Force Fields:



Scalability:

Centroidal Model

Problem: Spatial Graphs can grow arbitrarily large

Naïve Calculation of Repulsive forces between all nodes: $O(N^2) \rightarrow Bottleneck$ **Spark SQL:** Parallelize the computations in distributed form \rightarrow Increases Scalability **Future Work:**

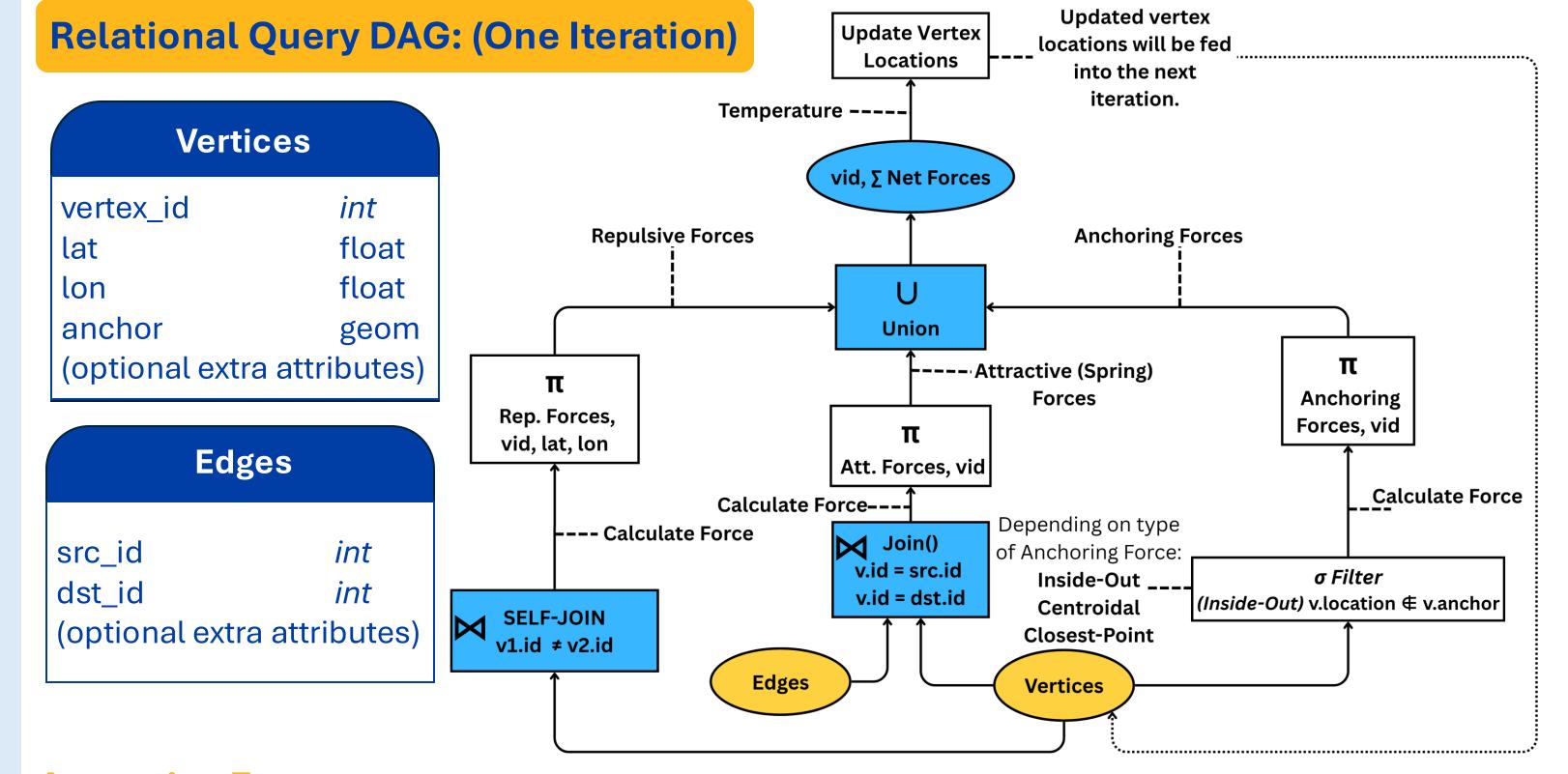
Closest-Point Model Centroidal Model

Use a Spatial Index (QuadTree partitioning of the space) and approximate effect of nodes that are further than the distance threshold theta. Based on well-separated pairs.

Related Work:

Polygonally Anchored Graph Drawing (Extended Abstract) (Chiu et al – 2024) Well Separated Pair Decomposition (Chan - 2008) A Potential-Field-Based Multilevel Algorithm for Drawing Large Graphs. (Hachul – 2005)

Relational Query Modeling



Attractive Forces:

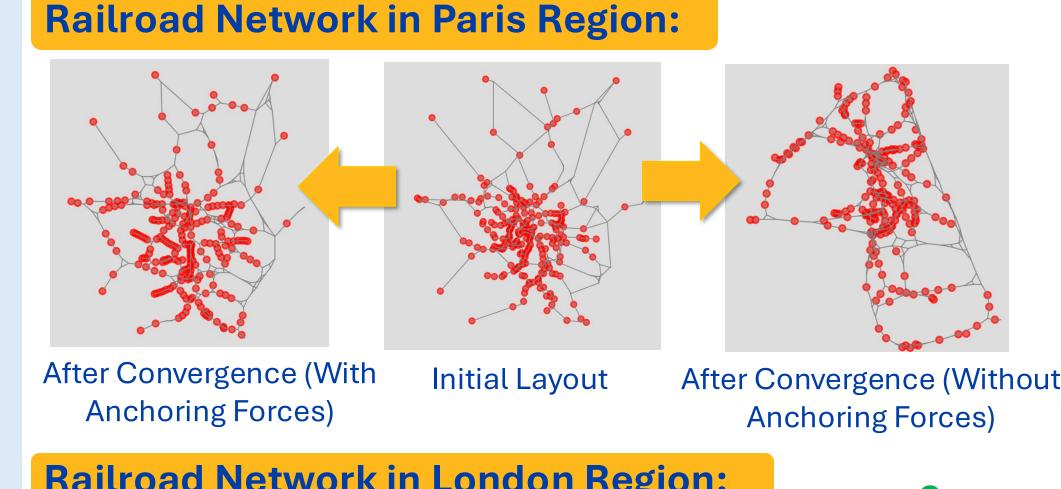
JOIN: Edges ⋈ Vertices → Spring force alpha L (ideal spring length) applied to both dst and src vertices. **Repulsive Forces:**

SPATIAL SELF-JOIN: Vertices ⋈ **Vertices** (within theta) → Repulsive force applied to both vertices. **Anchoring Forces:**

VERTICES → pull-to-anchor (centroid / closest-point) (σ Filter inside-out: skip if inside region) → per-vertex f **Net Force Aggregation:**

U UNION ALL (attractive, repulsive, anchoring) $\rightarrow \Sigma$ by vid $\rightarrow F_{total} \rightarrow Updater$

Use Cases



Railroad Network in London Region: A) Initial Layout B) After Convergence (With **Anchoring Forces**)

Green **Nodes:** Main stations **Strong Anchoring** Forces → Zoomed in – Railroad network in Nodes stay tethered to their true

Paris: Before (Top) vs After (Bottom) Convergence – Using Anchoring Forces. More homogenous edge lengths and increased layout legibility

Results and Conclusion

geographic

locations.

Evaluation Metrics:

Higher value is desired

HEL: (Homogenous Edge Lengths)

Experiment Setup:

We conducted experiments on a 12-node Spark cluster. The master node has two 8-core Intel Xeon E5-2609 v4 (1.7 GHz) CPUs and 128 GB RAM; each worker has two 6-core Xeon E5-2603 v4 CPUs and 64 GB RAM. All nodes run CentOS 7.5 with local SSDs for the OS and HDDs for data.

Dataset	# Vertices	# Edges
Gowalla Subset	22,803	381,384
Gowalla	107,092	913,660
Gowalla x2	214,184	1,827,320
Gowalla x5	535,460	4,568,300
Gowalla x10	1,070,920	9,136,600
Gowalla x 100	10,709,200	91,366,000

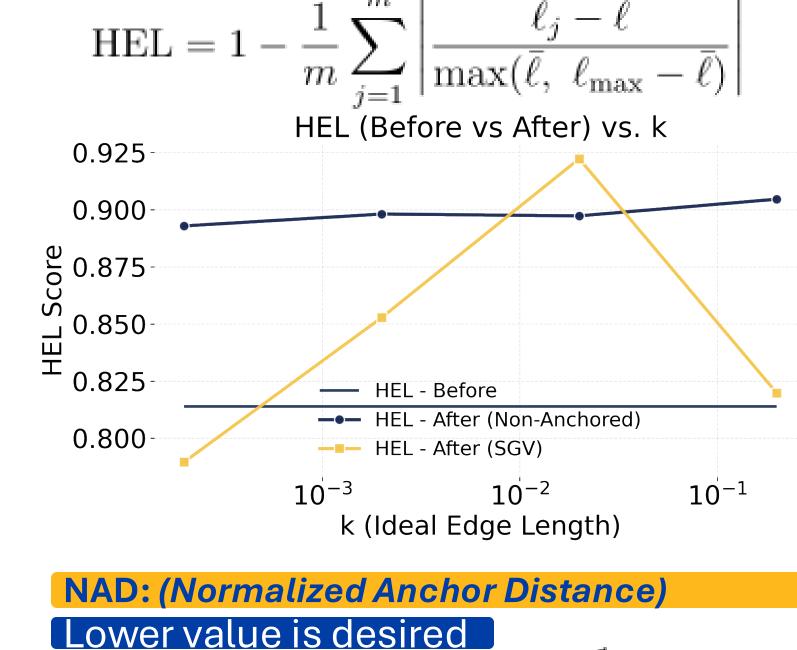
Goal: find a balance between edge length homogeneity and average distance from anchor of nodes in final layout.

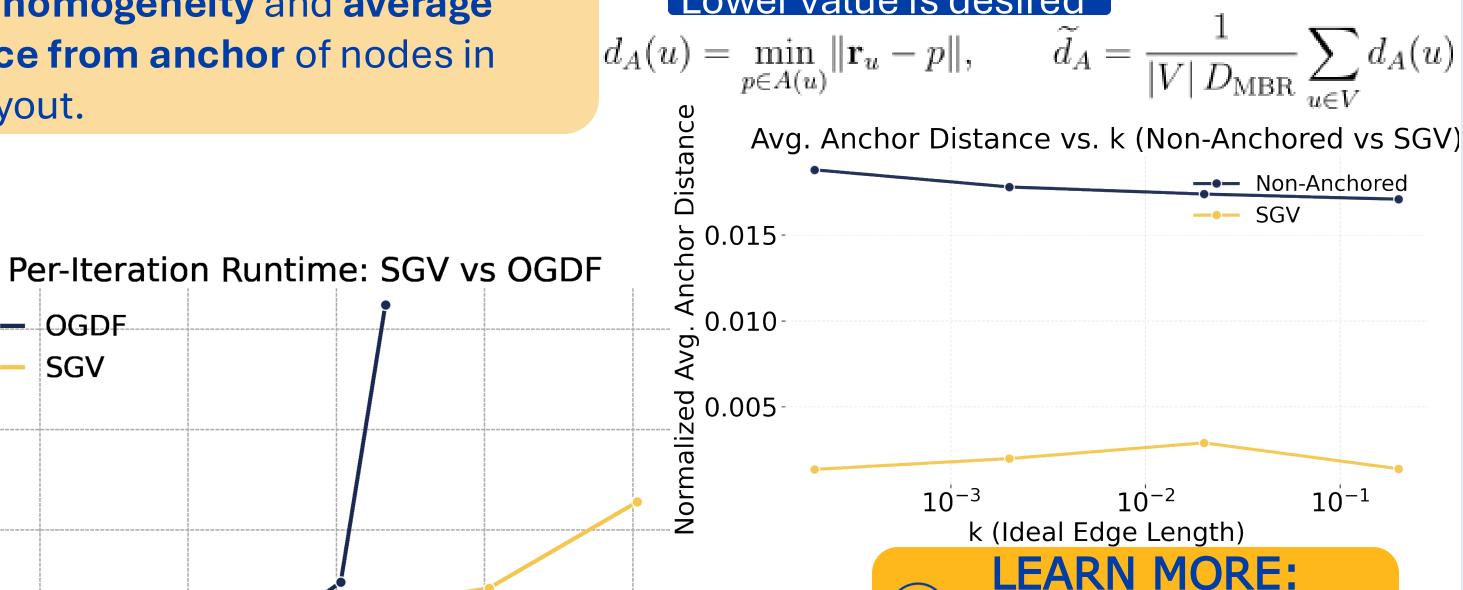
--- OGDF

 10^{3}

<u>اَ</u> 100-

SGV





github.com/tarlaun/fdgv

tbaha001@ucr.edu

of Vertices This work is supported in part by the National Science Foundation (NSF) under grant IIS-2046236

 10^6