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Abstract1

Suppose we are given a graph, G = (V, E), such that vertices have positive weights as well as2

geometric metadata, such as anchoring (x, y)-coordinates or geometric “home” regions. A Dorling3

cartogram is a way to visualize G where vertices are drawn as non-overlapping circles such that4

the circle for each vertex, v ∈ V , is drawn with size proportional to v’s weight and placed close5

to the anchoring location for v. Typically, the edges of G are not drawn in such visualizations,6

however; hence, adjacency information can be lost. In this paper, we introduce circle quasi-7

cartograms, which are modifications of Dorling cartograms where we join each pair of adjacent8

vertices with a line segment and we provide tunable parameters regarding the drawing, including9

the degree to which circles overlap. Specifically, we experimentally investigate force-directed circle10

quasi-cartogram drawing techniques for visualizing graphs where vertices have positive weights and11

geometric metadata under the the following constraints:12

1. Each vertex, v ∈ V is drawn as a circle anchored to stay within or near a given geometric anchor13

region associated with v, as determined by an anchor force factor, α.14

2. We draw each edge as a line segment joining the centers of its circle endvertices.15

3. Circle overlaps are determined by a tunable parameter, ρ.16

Our goal is to preserve the geometric and topological information of the graph while still accurately17

representing the statistical data represented in vertex weights. Applications include population18

visualization, where we aim to accurately represent the size of populations in a given geographic19

region while also visualizing connections between regions. Our experiments indicate that these20

techniques allow us to trade off visualizing spatial and topological information at the cost of21

visualizing statistical information, which can be controlled by adjusting anchor and overlap forces.22
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1 Introduction23

Geometric vertex-weighted graphs, where vertices have associated geometric metadata, such24

as (x, y)-coordinates, geometric “home” regions, or multi-point associations, are common, but25

they pose challenging trade-offs when one wishes to visualize them. Cartograms have often26

been used to visualize such graphs, e.g., in the form of value-by-area maps, where vertices27

are drawn as geometric regions and adjacencies are represented by regions that touch; see,28

e.g., [1, 11,13–16]. In a circle cartogram, which is also known as a “Dorling cartogram” [7],29

each vertex is represented as a circle proportional in size to its weight placed close to its30

geometric anchor so that circles do not overlap. See, e.g., Figure 1.31

Typically, as shown in Figure 1, the edges of a graph visualized as a Dorling cartogram34

are not included. This is unfortunate, of course, since edge connections provide important35

information, such as topological relationships. Moreover, although the restriction to visualize36

vertices as non-overlapping circles is aesthetically pleasing, requiring that edges in a circle37

cartogram be represented only as touching circles severely limits the class of graphs that38
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Figure 1 A Dorling cartogram of countries weighted by the number of links pointing to a country’s
article on the French Wikipedia. Image by Wikipedia user Moyogo, licensed under CC By-SA 3.0.

32

33

can be visualized. For example, if all the vertex weights are equal, then Dorling cartograms39

where touching circles represent edges are equivalent to penny graphs, which cannot represent40

K4, non-planar graphs, or a number of other interesting graphs; see, e.g., Eppstein [8].41

Thus, in practice, if the circles in a circle cartogram do not overlap, and circles are drawn42

with sizes proportional to their weights, then the visualization necessarily comes at the43

cost of spatial and topological accuracy, as circles must be shifted without consideration of44

the original topology. This is usually done via a force-directed algorithm that iteratively45

repels overlapping circles while keeping them attracted to their initial position and/or edge46

connections. As a result, Dorling cartograms often fail to preserve the viewer’s mental map47

without additional labeling [16]. Work by Wei, Ding, Xu, Cheng, Zhang, and Wang [17]48

aims to improve the topology of Dorling cartograms, but it fails to scale to larger graph49

instances. Our work aims to relax the requirement to completely avoid circle overlaps, while50

also explicitly drawing a graph’s edges as line segments joining the centers of the circles for51

adjacent vertices, in order to obtain better geographical and topological accuracy.52

Additional Related Work. Additional related work has considered anchored graph drawing,53

where the input graph is assumed to have positional information that must be respected in54

some way [12,18]. Other work has also combined anchor forces with force-directed algorithms55

to produce nice layouts that respect the initial geography [6].56

The standard force-directed algorithm in the literature is the Fruchterman-Reingold57

algorithm, which treats edges as springs with attractive forces and makes the vertices repel58

one another iteratively to produce a nice layout. However, this is slow on large graphs,59

taking O(n2) time per iteration where n is the number of vertices. Much work has been done60

to produce faster force-directed algorithms, such as the Fast Multipole Multilevel Method61

(FM3) by Hachul and Jünger [10]. The force-directed algorithm on which we build is the62

Fast Multipole Embedder by Gronemann [9], which uses the same repulsive forces as in63

Hachul and Jünger’s work, but modifies the attractive forces. These algorithms can handle64

large graphs by approximating the repulsive force calculations between all pairs of nodes65

using well-separated pair decompositions (WSPD) and multipole expansion [2–4].66

Our Results. In this paper, we introduce circle quasi-cartograms, and we provide a67

flexible force-directed algorithm for drawing circle quasi-cartograms with edge connections68
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explicitly represented and with relaxed overlap conditions, which are controlled by three69

parameters: a node-scaling factor, ω, an anchor force factor, α, and an overlap force factor,70

ρ. Since achieving a graph drawing that preserves initial positions while avoiding any node71

overlaps can be impossible, these three parameters are admittedly potentially in conflict with72

one another. If, for instance, one sets the node-scaling factor ω arbitrarily close to 0, then we73

can trivially have no node overlap with the initial layout. If one sets the anchor force factor74

α to 0, on the other hand, then we no longer have a geographical point of reference. And75

finally, if one sets the overlap force factor ρ to 0, then we will inevitably have node overlaps76

with any meaningful set of data. Hence, the desired parameters will be subject to tunable77

trade-offs, which we explore in this paper.78

For instance, by setting the overlap-force parameter ρ sufficiently high, our algorithm79

produces circle quasi-cartograms that eliminate all circle overlaps. When the input is a80

geographic map rather than an abstract graph, we first build its dual graph (connecting each81

pair of adjacent regions) and then apply attractive forces along those dual edges, drawing82

them explicitly in the quasi-cartogram to preserve regional topology. The anchor-force83

parameter α governs how strongly each circle is pulled toward its original geographic anchor:84

reducing α relaxes this pull, allowing nodes more freedom to reposition and overlap less.85

Conversely, permitting controlled overlap by lowering ρ often yields layouts that better86

preserve the map’s adjacency structure, as illustrated in Figure 2.87

In the example shown in Figure 2, the goal is to visualize county populations in California,88

which is shown in their geographical locations in Figure 2a. We can represent a county in a89

more granular fashion via its census tracts, which will allow its shape to morph according to90

the constraints of its geography and topology once we run our algorithm. As census tracts91

are designed to be relatively uniform in population, we can obtain a much more compact92

visualization of the population this way. As it stands, we cannot visually see the population93

size of these color-coded counties due to all the nodes overlapping each other. We show94

two outputs of our algorithm: Figure 2b that has 1221 overlaps, and Figure 2c that has 995

overlaps. While the latter better represents the true size of these counties due to almost zero96

node overlap, there is a fair amount of nodes spilling across county borders when this should97

ideally only happen at the border. The former preserves this topology much better, however,98

this comes at the cost of node overlaps that produce some minor cartographic error.99

100 (a) Input geographic layout (b) ω = 100, α = 1, ρ = 1 (c) ω = 100, α = 1, ρ = 3

Figure 2 CA. (a) the dual graph of 8057 census tracts in California, where nodes are color-coded
by county and proportional to population. It has 83508 node overlaps. After running our algorithm,
(b) shows a drawing with 1221 node overlaps, and (c) shows a drawing with 9 node overlaps.

101

102

103
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2 The Force-Directed Algorithm104

Fast Multipole Embedder. The base force-directed algorithm we build upon is the Fast105

Multipole Embedder of Gronemann [9]. As input, we are given a graph layout G = (V, E)106

where every vertex v ∈ V has a radius rv and initial “anchor” xy-position vector qv. Let107

two arbitrary vertices, u and v, be distance duv = |pu − pv| apart, where pu and pv are the108

current xy-position vectors of u and v respectively. Then the magnitudes of the repulsive109

force Frep(u, v) and the attractive force Fattr(e) if edge e = (u, v) ∈ E exists will be:110

|Frep(u, v)| = cr

duv
and |Fattr(e)| = −ca · log duv

de
· duv

deg(v) . (1)111

Here cr and ca are constants, and de = ru + rv is the ideal edge length for edge e = (u, v),112

when the two nodes u and v are tangent. Then each iteration of the algorithm will apply113

these forces until we exceed the minimum number of iterations and the maximum force114

falls below some threshold, ϵ. However, calculating Fattr(e) and Frep(u, v) exactly will take115

O(|E| + |V |2) time per iteration, which becomes infeasible for large graphs.116

To overcome this, the repulsive forces are approximated by grouping together far nodes117

using a well-separated pair decomposition of all pairs of points [3]. This can be found in118

O(|V | log |V |) time by constructing a hierarchical partition of the space into quadrants via119

a quadtree data structure [4]. Then, the calculations themselves are approximated using120

multipole expansion, which takes the first p terms (depending on the precision needed) of121

the power series expansion of the forces. For t points, the approximate calculation will now122

take O(pt) time, rather than the O(t2) time needed for the exact calculation. The details of123

these approximations (and the extent to which the error is bounded) can be found in [9].124

Anchor and Overlap Forces. We apply two additional forces in each iteration, on top of125

those supplied by the Fast Multipole Embedder algorithm. First, the anchor force acts like a126

spring: it takes the displacement vector going from node u’s current position pu to its initial127

anchor position qu, multiplied by the anchor factor α ∈ [0, 1] as seen in Figure 3a:128

Fanchor(u) = α(qu − pu) (2)129

We allow the anchor factor α to range from [0, 1], where α = 0 applies no anchor forces and130

α = 1 means that our anchor force pulls the node equal to its displacement from its original131

location. There is no need for α > 1, otherwise the force will “overshoot” the original anchor132

position.133

Second, we apply a force if two nodes u, v are overlapping, multiplied by an overlap factor134

ρ ≥ 0, as seen in Figure 3b:135

Fo(u) =
{

ρ · ru+rv

|pu−pv| · pu−pv

|pu−pv| if duv < ru + rv

0 else
(3)136

We note that while the overlap factor ρ can be unbounded, we will see that there is no need137

to increase it once there are zero node overlaps.138

Finally, each node u has some positive data weight wu > 0, which will be used with the139

node-scaling factor ω to determine its radius ru. Let wmax be the maximum data weight.140

Then we rescale the weights so that the radius of node u belongs in the range (0, ω]:141

ru = ω ·
√

wu

wmax
(4)142
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(a) Force field of anchor force.147

v

rv

Fo(v)
u

ru

Fo(u)

(b) Force vectors applied to overlapping nodes u, v.148

Figure 3 Anchor and overlap forces applied in addition to the base force-directed algorithm.149

If some input data weights are equal to 0, then we rescale the data to ensure that there143

are only non-zero radii. Accordingly, the area of the circle corresponding to node u will be144

proportional to its weight, wu. Increasing the node-scaling factor ω will spread the nodes as145

they grow in size, but eventually this will out-scale the constraints of the initial layout.146

3 Experiments150

We implemented our circle quasi-cartogram drawing algorithm using the Open Graph Drawing151

Framework (OGDF) [5], and we ran experiments on a computer with 16GB RAM and a 12th152

Gen Intel Core i5-12400F CPU. We experimentally studied the tradeoffs in various drawing153

metrics as we adjust the three parameters of the algorithm. Specifically, we measure the154

impact of various choices a node-scaling factor, ω, an anchor force factor, α, and an overlap155

force factor, ρ, has on the following drawing metrics:156

The number of node overlaps157

The number of edge crossings158

The average edge length159

The average distance from initial anchor positions160

We observe that the number of node overlaps can reach 0 by setting ρ high enough, which161

often has high priority as it allows statistical data to be represented accurately in the162

visualization. On the other hand, the number of edge crossings is not necessarily a priority163

for visualizing geo-referenced data, but it is a natural graph layout metric to observe and can164

be a proxy for the graph’s topology. We mainly use geographic datasets for our experiments,165

which naturally have few initial edge crossings. The average edge length can also be used as166

a proxy metric for how well the geography was preserved compared to its value in the initial167

layout (baseline). Finally, the average distance from the initial anchor positions is a key168

metric that we do not want to increase too much from the baseline of 0 in the initial layout.169

Datasets. Our first dataset, USA, is a graph of the 3108 counties of the 48 states in170

the continental U.S. (which excludes Hawaii and Alaska). We added 7595 edges between171
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Figure 4 2010 county populations of the continental USA, color-coded by states. It has 0 node
overlaps with parameters ω = 2500, α = 1, ρ = 3.

178

179

adjacent counties if they belong to the same state, so the underlying graph has 48 connected172

components, one for each state (each with its own color in Figure 4). For a given county,173

u, the initial position qu was set to the county’s centroid and its weight wu was set to its174

population in the first dataset. The graph was constructed in this manner to preserve the175

topology within a state. The Northeast is the noteworthy region here, as it is the most176

densely populated region of the U.S. and thus we see the most mixing between states there.177

Our second dataset, CA, is a dual graph of the 8057 census tracts in California, which180

form 22069 edges between adjacent tracts. For a given census tract, u, the initial position181

qu is its centroid, and its weight wu is its 2010 population. The baseline geographic layout182

is shown in Figure 2, along with two runs of the algorithm with ω = 100, α = 1, ρ = 1 and183

ω = 100, α = 1, ρ = 3. The census tract nodes are color coded by county, of which there are184

58 in California. We also note that Figure 2 can be viewed as a more granular representation185

of the county populations in California seen in Figure 4, which is the connected component186

in orange on the left.187

Parameter Evaluation. We first consider fixing the node-scaling factor, ω = 2500, while188

changing α or ρ. We compare our algorithm against the “baseline” graph, which is simply189

the input graph layout for the USA dataset with node-scaling factor ω = 2500 that does190

not run our algorithm. Our results are shown in Figure 5, connected by a dashed line to191

the layouts for the baseline graph. We note that our algorithm’s output with parameters192

α = 1 and ρ = 0 is remarkably close to the baseline with respect to the four drawing metrics.193

Decreasing the anchor factor α increases the average anchor distance as expected, with the194

slight benefit of fewer node overlaps. This makes sense as a layout that is less constrained195

to its initial layout provides more space for nodes. However, increasing the overlap factor196

ρ from 0 achieves the same result of much fewer node overlaps but incurs higher average197

anchor distance and crossings almost immediately. In fact, we reach exactly 0 node overlaps198

at ρ = 3, and see that there is no real benefit to increasing ρ any further.199

In the CA dataset, we observe the same trends when it comes to the trade-offs between α201

and ρ for a fixed node-scaling factor ω. However, increasing ρ also leads to a steady increase202
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Figure 5 Plots showing graph metrics of USA county graph, fixing ω and varying α or ρ.200

in the average edge length and anchor distance. We suspect that this was not as apparent in203

the USA dataset (where both metrics seem to level off) due to the sparser connectivity of204

the graph. Many of the connected components (the states of the U.S.) could not continue205

expanding if surrounded by other states, whereas a single connected component would be206

able to. Regardless, the number of edge crossings increased at a much faster rate and remains207

the main trade-off for zero node overlaps when increasing ρ.208

In the (log-log) plot shown in Figure 6, we see the effects of increasing the node-scaling209

factor, ω. All four graph metrics increase, so it is up to the user to decide at what point210

the layout will still be meaningful. When ω is large enough, it eventually out-scales the211

original layout. Figure 2 shows the data point with ω = 100, α = 1, ρ = 1, which offers a212

good compromise in preserving the geography while still visualizing the scale of the data.213

For comparison, the layout that comes before the jump in node overlaps at ω = 50 is shown214

by Figure 7 in the Appendix.215
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Figure 6 Log-log plot for the effect of the factor ω on various graph qualities of the CA graph.216

4 Conclusion217

In this paper, we introduced a force-directed algorithm for drawing circle quasi-cartograms218

that explicitly balances geographic fidelity, topological adjacency, and statistical accuracy219

via controllable node overlap. We can achieve zero node overlaps mainly at the cost of220

many edge crossings, with slight increases in the average edge length and anchor distance.221

Although these edge crossings are often hidden by circles in congested parts of the layout, we222

would like to reduce this metric in future work. If we permit some overlap, the topological223

and geographical accuracy improves. An interesting future direction would be to model the224

anchor locations more precisely than as anchor points.225
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5 Appendix275

The first two datasets USA and CA can be found at https://people.csail.mit.edu/280

ddeford/dual_graphs.html. Below we show the difference when increasing the node-scaling281

factor ω, which is a trade-off between geographical accuracy and the scale of data. Orange282

County (color teal, unfortunately) and San Diego County (color pink) in Southern California283

do not seem to border in Figure 7a but do in Figure 7b, fully connecting the 5 major counties284

of Southern California into one big population “blob”.

(a) ω = 50, α = 1, ρ = 1276 (b) ω = 100, α = 1, ρ = 1277

Figure 7 The effect of varying the node-scaling factor ω is shown on the CA dataset. (a) has 4
node overlaps, while (b) has 1221 node overlaps.

278

279

285

We also show a third dataset PA in Figure 8, which can be found at https://github.289

com/mggg/GerryChain/blob/main/docs/user/quickstart.rst:

Figure 8 2016 U.S. Election results of Pennsylvania. Its 8921 voting tabulation districts
are represented as red nodes if Republican-majority or blue nodes if Democrat-majority, scaled
proportional to the number of winning votes. 40 node overlaps with parameters ω = 50, α = 1, ρ = 1.

286

287

288

290
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